
Heat Generation
A medium through which heat is conducted may involve the conversion of
mechanical, electrical, nuclear, or chemical energy into heat (or thermal en-
ergy). In heat conduction analysis, such conversion processes are character-
ized as heat (or thermal energy) generation.

For example, the temperature of a resistance wire rises rapidly when elec-
tric current passes through it as a result of the electrical energy being con-
verted to heat at a rate of I2R, where I is the current and R is the electrical
resistance of the wire (Fig. 2–9). The safe and effective removal of this heat
away from the sites of heat generation (the electronic circuits) is the subject 
of electronics cooling, which is one of the modern application areas of heat
transfer.

Likewise, a large amount of heat is generated in the fuel elements of nuclear
reactors as a result of nuclear fission that serves as the heat source for the nu-
clear power plants. The natural disintegration of radioactive elements in nu-
clear waste or other radioactive material also results in the generation of heat
throughout the body. The heat generated in the sun as a result of the fusion of
hydrogen into helium makes the sun a large nuclear reactor that supplies heat
to the earth.

Another source of heat generation in a medium is exothermic chemical re-
actions that may occur throughout the medium. The chemical reaction in this
case serves as a heat source for the medium. In the case of endothermic reac-
tions, however, heat is absorbed instead of being released during reaction, and
thus the chemical reaction serves as a heat sink. The heat generation term be-
comes a negative quantity in this case.

Often it is also convenient to model the absorption of radiation such as so-
lar energy or gamma rays as heat generation when these rays penetrate deep
into the body while being absorbed gradually. For example, the absorption of
solar energy in large bodies of water can be treated as heat generation
throughout the water at a rate equal to the rate of absorption, which varies with
depth (Fig. 2–10). But the absorption of solar energy by an opaque body 
occurs within a few microns of the surface, and the solar energy that pene-
trates into the medium in this case can be treated as specified heat flux on the
surface.

Note that heat generation is a volumetric phenomenon. That is, it occurs
throughout the body of a medium. Therefore, the rate of heat generation in a
medium is usually specified per unit volume and is denoted by e·gen, whose unit
is W/m3 or Btu/h·ft3.

The rate of heat generation in a medium may vary with time as well as po-
sition within the medium. When the variation of heat generation with position
is known, the total rate of heat generation in a medium of volume V can be de-
termined from

E
·

gen � e· gendV (W) (2–5)

In the special case of uniform heat generation, as in the case of electric
resistance heating throughout a homogeneous material, the relation in Eq. 2–5
reduces to E·gen � e·genV, where e·gen is the constant rate of heat generation per
unit volume.

�
V
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FIGURE 2–9
Heat is generated in the heating coils
of an electric range as a result of the
conversion of electrical energy to heat.
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FIGURE 2–10
The absorption of solar radiation 
by water can be treated as heat
generation.
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2–2 ONE-DIMENSIONAL 
HEAT CONDUCTION EQUATION

Consider heat conduction through a large plane wall such as the wall of a
house, the glass of a single pane window, the metal plate at the bottom of a
pressing iron, a cast-iron steam pipe, a cylindrical nuclear fuel element, an
electrical resistance wire, the wall of a spherical container, or a spherical
metal ball that is being quenched or tempered. Heat conduction in these 
and many other geometries can be approximated as being one-dimensional
since heat conduction through these geometries is dominant in one 
direction and negligible in other directions. Next we develop the one-
dimensional heat conduction equation in rectangular, cylindrical, and spher-
ical coordinates.

Heat Conduction Equation in a Large Plane Wall
Consider a thin element of thickness �x in a large plane wall, as shown in 
Fig. 2–12. Assume the density of the wall is r, the specific heat is c, and the
area of the wall normal to the direction of heat transfer is A. An energy bal-
ance on this thin element during a small time interval �t can be expressed as

■
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EXAMPLE 2–1 Heat Generation in a Hair Dryer

The resistance wire of a 1200-W hair dryer is 80 cm long and has a diameter
of D � 0.3 cm (Fig. 2–11). Determine the rate of heat generation in the wire
per unit volume, in W/cm3, and the heat flux on the outer surface of the wire
as a result of this heat generation.

SOLUTION The power consumed by the resistance wire of a hair dryer is
given. The heat generation and the heat flux are to be determined.
Assumptions Heat is generated uniformly in the resistance wire.
Analysis A 1200-W hair dryer converts electrical energy into heat in the wire
at a rate of 1200 W. Therefore, the rate of heat generation in a resistance wire
is equal to the power consumption of a resistance heater. Then the rate of heat
generation in the wire per unit volume is determined by dividing the total rate
of heat generation by the volume of the wire,

e·gen � � � � 212 W/cm3

Similarly, heat flux on the outer surface of the wire as a result of this heat gen-
eration is determined by dividing the total rate of heat generation by the 
surface area of the wire,

Q
·

s � � � � 15.9 W/cm3

Discussion Note that heat generation is expressed per unit volume in W/cm3

or Btu/h·ft3, whereas heat flux is expressed per unit surface area in W/cm2 or
Btu/h·ft2.
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FIGURE 2–11
Schematic for Example 2–1.
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FIGURE 2–12
One-dimensional heat conduction

through a volume element in 
a large plane wall.
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� � �

or

Q
·

x � Q
·

x � �x � E
·
gen, element � (2–6)

But the change in the energy content of the element and the rate of heat gen-
eration within the element can be expressed as

�Eelement � Et � �t � Et � mc(Tt � �t � Tt) � rcA�x(Tt � �t � Tt) (2–7)

E
·
gen, element � e·genVelement � e·gen A�x (2–8)

Substituting into Eq. 2–6, we get

Q
·

x � Q
·

x � �x � e·gen A�x � rcA�x (2–9)

Dividing by A�x gives

� � e·gen � rc (2–10)

Taking the limit as �x → 0 and �t → 0 yields

� e·gen � rc (2–11)

since, from the definition of the derivative and Fourier’s law of heat 
conduction,

� � (2–12)

Noting that the area A is constant for a plane wall, the one-dimensional tran-
sient heat conduction equation in a plane wall becomes

Variable conductivity: � e·gen � rc (2–13)

The thermal conductivity k of a material, in general, depends on the tempera-
ture T (and therefore x), and thus it cannot be taken out of the derivative. How-
ever, the thermal conductivity in most practical applications can be assumed to
remain constant at some average value. The equation above in that case 
reduces to

Constant conductivity: � � (2–14)

where the property a � k/rc is the thermal diffusivity of the material and
represents how fast heat propagates through a material. It reduces to the
following forms under specified conditions (Fig. 2–13):

�T
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e
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FIGURE 2–13
The simplification of the one-
dimensional heat conduction equation
in a plane wall for the case of constant
conductivity for steady conduction
with no heat generation.
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� � 0 (2–15)

� (2–16)

� 0 (2–17)

Note that we replaced the partial derivatives by ordinary derivatives in the
one-dimensional steady heat conduction case since the partial and ordinary
derivatives of a function are identical when the function depends on a single
variable only [T � T(x) in this case].

Heat Conduction Equation in a Long Cylinder
Now consider a thin cylindrical shell element of thickness �r in a long 
cylinder, as shown in Fig. 2–14. Assume the density of the cylinder is r, the
specific heat is c, and the length is L. The area of the cylinder normal to the
direction of heat transfer at any location is A � 2prL where r is the value of
the radius at that location. Note that the heat transfer area A depends on r
in this case, and thus it varies with location. An energy balance on this thin
cylindrical shell element during a small time interval �t can be expressed as

� � �

or

Q
·

r � Q
·

r � �r � E
·
gen, element � (2–18)

The change in the energy content of the element and the rate of heat genera-
tion within the element can be expressed as

�Eelement � Et � �t � Et � mc(Tt � �t � Tt) � rcA�r(Tt � �t � Tt) (2–19)

E
·
gen, element � e·genVelement � e·gen A�r (2–20)

Substituting into Eq. 2–18, we get

Q
·

r � Q
·

r � �r � e·gen A�r � rcA�r (2–21)

where A � 2prL. You may be tempted to express the area at the middle of
the element using the average radius as A � 2p(r � �r/2)L. But there is
nothing we can gain from this complication since later in the analysis we
will take the limit as �r → 0 and thus the term �r/2 will drop out. Now
dividing the equation above by A�r gives

� � e·gen � rc (2–22)

Taking the limit as �r → 0 and �t → 0 yields

� e·gen � rc (2–23)
�T
�t�kA 

�T
�r��
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d 2T
dx2

(3) Steady-state, no heat generation:
(�/�t � 0 and e·gen � 0)

�T
�t

1
a

�2T
�x2

(2) Transient, no heat generation:
(e·gen � 0)

e
.
gen

k
d 2T
dx2

(1) Steady-state:
(�/�t � 0)
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FIGURE 2–14
One-dimensional heat conduction

through a volume element 
in a long cylinder.
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since, from the definition of the derivative and Fourier’s law of heat conduction,

� � (2–24)

Noting that the heat transfer area in this case is A = 2prL, the one-dimensional
transient heat conduction equation in a cylinder becomes

Variable conductivity: � e·gen � rc (2–25)

For the case of constant thermal conductivity, the previous equation reduces to

Constant conductivity: � � (2–26)

where again the property a � k/rc is the thermal diffusivity of the mate-
rial. Eq. 2–26 reduces to the following forms under specified conditions 
(Fig. 2–15):

� � 0 (2–27)

� (2–28)

� 0 (2–29)

Note that we again replaced the partial derivatives by ordinary derivatives in
the one-dimensional steady heat conduction case since the partial and ordinary
derivatives of a function are identical when the function depends on a single
variable only [T � T(r) in this case].

Heat Conduction Equation in a Sphere
Now consider a sphere with density 	, specific heat c, and outer radius R. The
area of the sphere normal to the direction of heat transfer at any location is 
A � 4pr2, where r is the value of the radius at that location. Note that the heat
transfer area A depends on r in this case also, and thus it varies with location.
By considering a thin spherical shell element of thickness �r and repeating
the approach described above for the cylinder by using A � 4pr2 instead of 
A � 2prL, the one-dimensional transient heat conduction equation for a
sphere is determined to be (Fig. 2–16)

Variable conductivity: � e·gen � rc (2–30)

which, in the case of constant thermal conductivity, reduces to

Constant conductivity: � � (2–31)

where again the property a� k/rc is the thermal diffusivity of the material. It
reduces to the following forms under specified conditions:

�T
�t

1
a

e
.
gen

k�r 2 
�T
�r ��

�r
1
r 2

�T
�t�r 2 k 

�T
�r ��

�r
1
r 2

�r 
dT
dr �d

dr
(3) Steady-state, no heat generation:

(�/�t � 0 and e·gen � 0)

�T
�t

1

�r 

�T
�r ��

�r
1
r

(2) Transient, no heat generation:
(e·gen � 0)

e
.
gen

k�r 
dT
dr �d

dr
1
r

(1) Steady-state:
(�/�t � 0)

�T
�t

1
a

e
.
gen

k�r 
�T
�r ��

�r
1
r

�T
�t�rk 

�T
�r ��

�r
1
r

��kA 
�T
�r ��

�r
�Q

.

�r
Q
.

r��r � Q
.

r

�r
lim

�r → 0

72
HEAT CONDUCTION EQUATION

FIGURE 2–15
Two equivalent forms of the
differential equation for the one-
dimensional steady heat conduction in
a cylinder with no heat generation.
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FIGURE 2–16
One-dimensional heat conduction
through a volume element in a sphere.

(a) The form that is ready to integrate

(b) The equivalent alternative form
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� � 0 (2–32)

� (2–33)

� 0 or r � 2 � 0 (2–34)

where again we replaced the partial derivatives by ordinary derivatives in the
one-dimensional steady heat conduction case.

Combined One-Dimensional 
Heat Conduction Equation
An examination of the one-dimensional transient heat conduction equations
for the plane wall, cylinder, and sphere reveals that all three equations can be
expressed in a compact form as

� e·gen � rc (2–35)

where n � 0 for a plane wall, n � 1 for a cylinder, and n � 2 for a sphere. In
the case of a plane wall, it is customary to replace the variable r by x. This
equation can be simplified for steady-state or no heat generation cases as 
described before.
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EXAMPLE 2–2 Heat Conduction through the Bottom of a Pan

Consider a steel pan placed on top of an electric range to cook spaghetti 
(Fig. 2–17). The bottom section of the pan is 0.4 cm thick and has a diameter
of 18 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 80 percent of the heat generated in the heating element
is transferred uniformly to the pan. Assuming constant thermal conductivity,
obtain the differential equation that describes the variation of the temperature
in the bottom section of the pan during steady operation.

SOLUTION A steel pan placed on top of an electric range is considered. The
differential equation for the variation of temperature in the bottom of the pan
is to be obtained.
Analysis The bottom section of the pan has a large surface area relative to its
thickness and can be approximated as a large plane wall. Heat flux is applied to
the bottom surface of the pan uniformly, and the conditions on the inner surface
are also uniform. Therefore, we expect the heat transfer through the bottom sec-
tion of the pan to be from the bottom surface toward the top, and heat transfer
in this case can reasonably be approximated as being one-dimensional. Taking
the direction normal to the bottom surface of the pan to be the x-axis, we will
have T � T(x) during steady operation since the temperature in this case will
depend on x only.

800 W

FIGURE 2–17
Schematic for Example 2–2.
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The thermal conductivity is given to be constant, and there is no heat gener-
ation in the medium (within the bottom section of the pan). Therefore, the dif-
ferential equation governing the variation of temperature in the bottom section
of the pan in this case is simply Eq. 2–17,

� 0

which is the steady one-dimensional heat conduction equation in rectangular
coordinates under the conditions of constant thermal conductivity and no heat
generation.
Discussion Note that the conditions at the surface of the medium have no ef-
fect on the differential equation.

d 2T

dx2

EXAMPLE 2–3 Heat Conduction in a Resistance Heater

A 2-kW resistance heater wire with thermal conductivity k � 15 W/m·K, diam-
eter D � 0.4 cm, and length L � 50 cm is used to boil water by immersing 
it in water (Fig. 2–18). Assuming the variation of the thermal conductivity of
the wire with temperature to be negligible, obtain the differential equation that
describes the variation of the temperature in the wire during steady operation.

SOLUTION The resistance wire of a water heater is considered. The differen-
tial equation for the variation of temperature in the wire is to be obtained.
Analysis The resistance wire can be considered to be a very long cylinder since
its length is more than 100 times its diameter. Also, heat is generated uniformly
in the wire and the conditions on the outer surface of the wire are uniform.
Therefore, it is reasonable to expect the temperature in the wire to vary in the
radial r direction only and thus the heat transfer to be one-dimensional. Then
we have T � T(r) during steady operation since the temperature in this case de-
pends on r only.

The rate of heat generation in the wire per unit volume can be determined
from

e·gen � � � � 0.318 � 109 W/m3

Noting that the thermal conductivity is given to be constant, the differential
equation that governs the variation of temperature in the wire is simply 
Eq. 2–27,

� � 0

which is the steady one-dimensional heat conduction equation in cylindrical
coordinates for the case of constant thermal conductivity.
Discussion Note again that the conditions at the surface of the wire have no
effect on the differential equation.
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FIGURE 2–18
Schematic for Example 2–3.
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2–3 GENERAL HEAT CONDUCTION EQUATION
In the last section we considered one-dimensional heat conduction and 
assumed heat conduction in other directions to be negligible. Most heat trans-
fer problems encountered in practice can be approximated as being one-
dimensional, and we mostly deal with such problems in this text. However,
this is not always the case, and sometimes we need to consider heat transfer in
other directions as well. In such cases heat conduction is said to be multidi-
mensional, and in this section we develop the governing differential equation
in such systems in rectangular, cylindrical, and spherical coordinate systems.

Rectangular Coordinates
Consider a small rectangular element of length �x, width �y, and height �z,
as shown in Fig. 2–20. Assume the density of the body is r and the specific
heat is c. An energy balance on this element during a small time interval �t
can be expressed as

� � � �
Rate of change
of the energy

content of
the element ��
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generation
inside the
element ��

Rate of heat
conduction
at x � �x,

y � �y, and z � �z �� Rate of heat
conduction at

x, y, and z �
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EXAMPLE 2–4 Cooling of a Hot Metal Ball in Air

A spherical metal ball of radius R is heated in an oven to a temperature of
600°F throughout and is then taken out of the oven and allowed to cool in am-
bient air at T� � 75°F by convection and radiation (Fig. 2–19). The thermal
conductivity of the ball material is known to vary linearly with temperature. As-
suming the ball is cooled uniformly from the entire outer surface, obtain the
differential equation that describes the variation of the temperature in the ball
during cooling.

SOLUTION A hot metal ball is allowed to cool in ambient air. The differential
equation for the variation of temperature within the ball is to be obtained.
Analysis The ball is initially at a uniform temperature and is cooled uniformly
from the entire outer surface. Also, the temperature at any point in the ball
changes with time during cooling. Therefore, this is a one-dimensional tran-
sient heat conduction problem since the temperature within the ball changes
with the radial distance r and the time t. That is, T � T (r, t).

The thermal conductivity is given to be variable, and there is no heat gener-
ation in the ball. Therefore, the differential equation that governs the variation
of temperature in the ball in this case is obtained from Eq. 2–30 by setting the
heat generation term equal to zero. We obtain

� rc

which is the one-dimensional transient heat conduction equation in spherical
coordinates under the conditions of variable thermal conductivity and no heat
generation.
Discussion Note again that the conditions at the outer surface of the ball have
no effect on the differential equation.

�T
�t

ar 2 k 
�T
�r
b�

�r
1
r 2

Metal ball

600°F

75°F

Q
·

FIGURE 2–19
Schematic for Example 2–4.

Qx
·

Qz + Δz
·

Qy + Δy
·

Qx + Δx
·

Qy
·

Qz
·

Δx Δy

Δz

x

z

y

Volume element

egen ΔxΔyΔz·

FIGURE 2–20
Three-dimensional heat conduction

through a rectangular volume element.
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